Objective: To explore the clinicopathological impact of lncRNAs, immunotherapy, and DNA methylation in lung squamous cell carcinoma (LUSC), emphasizing their exact roles in carcinogenesis and modes of action.Background: LUSC is the second most prevalent form, accounting for around 30% of non-small cell lung cancer (NSCLC). To date, molecular-targeted treatments have significantly improved overall survival in lung adenocarcinoma patients but have had little effect on LUSC therapy. As a result, there is an urgent need to discover new treatments for LUSC that are based on existing genomic methods.
Methods:In this review, we summarized and analyzed recent research on the biological activities and processes of lncRNA, immunotherapy, and DNA methylation in the formation of LUSC. The relevant studies were retrieved using a thorough search of Pubmed, Web of Science, Science Direct, Google Scholar, and the university's online library, among other sources.Conclusions: LncRNAs are the primary components of the mammalian transcriptome and are emerging as master regulators of a number of cellular processes, including the cell cycle, differentiation, apoptosis, and growth, and are implicated in the pathogenesis of a variety of cancers, including LUSC. Understanding their role in LUSC in detail may help develop innovative treatment methods and tactics for LUSC. Meanwhile, immunotherapy has transformed the LUSC treatment and is now considered the new standard of care. To get a better knowledge of LUSC biology, it is critical to develop superior modeling systems. Preclinical models, particularly those that resemble human illness by preserving the tumor immune environment, are essential for studying cancer progression and evaluating novel treatment targets. DNA methylation, similarly, is a component of epigenetic alterations that regulate cellular function and contribute to cancer development.By methylating the promoter regions of tumor suppressor genes, abnormal DNA methylation silences their expression. DNA methylation indicators are critical in the early detection of lung cancer, predicting therapy efficacy, and tracking treatment resistance. As such, this review seeks to explore the clinicopathological impact of lncRNAs, immunotherapy, and DNA methylation in LUSC, emphasizing their exact roles in carcinogenesis and modes of action.