Background/Aims: Vasculogenic mimicry (VM) has been reported to be a novel glioma neovascularization process. Anti-VM therapy provides new insight into glioma clinical management. In this study, we revealed the role of the long non-coding RNA HOXA cluster antisense RNA 2 (HOXA-AS2) in malignant glioma behaviors and VM formation. Methods: Quantitative real-time PCR was performed to determine the expression levels of HOXA-AS2 in glioma samples and glioblastoma cell lines. CD34-periodic acid-Schiff dual-staining was performed to assess VM in glioma samples. CCK-8, transwell, and Matrigel tube formation assays were performed to measure the effects of HOXA-AS2 knockdown on cell viability, migration, invasion, and VM tube formation, respectively. RNA immunoprecipitation, dual-luciferase reporter and Western blot assays were performed to explore the molecular mechanisms underlying the functions of HOXS-AS2 in glioblastoma cells. A nude mouse xenograft model was used to investigate the role of HOXA-AS2 in xenograft glioma growth and VM density. Student’s t-tests, one-way ANOVAs followed by Bonferroni posthoc tests, and chi-square tests were used for the statistical analyses. Results: HOXA-AS2 was upregulated in glioma samples and cell lines and was positively correlated with VM. HOXA-AS2 knockdown attenuated cell viability, migration, invasion, and VM formation in glioma cells and inhibited the expression of vascular endothelial-cadherin (VE-cadherin), as well as the expression and activity of matrix metalloproteinase matrix metalloproteinase (MMP)-2 and MMP-9. miR-373 was downregulated in glioma samples and cell lines and suppressed malignancy in glioblastoma cells. HOXA-AS2 bound to miR-373 and negatively regulated its expression. Epidermal growth factor receptor (EGFR), a target of miR-373, increased the expression levels of VE-cadherin, as well as the expression and activity levels of MMP-2 and MMP-9, via activating phosphatidylinositol 3-kinase/serine/threonine kinase pathways. HOXA-AS2 knockdown combined with miR-373 overexpression yielded optimal tumor suppressive effects and the lowest VM density in vivo. Conclusion: HOXA-AS2 knockdown inhibited malignant glioma behaviors and VM formation via the miR-373/EGFR axis.