Recent evidence indicates that long noncoding RNAs (lncRNAs) have a critical role in the regulation of cellular processes such as differentiation, proliferation, and metastasis. These lncRNAs are dysregulated in a variety of cancers and many function as tumor suppressors; however, the regulatory factors involved in silencing lncRNA transcription are poorly understood. In this study, we showed that epigenetic silencing of lncRNA SPRY4 intronic transcript 1 (SPRY4-IT1) occurs in non-small-cell lung cancer (NSCLC) cells through direct transcriptional repression mediated by the Polycomb group protein enhancer of zeste homolog 2 (EZH2). SPRY4-IT1 is derived from an intron within SPRY4, and is upregulated in melanoma cells; knockdown of its expression leads to cell growth arrest, invasion inhibition, and elevated rates of apoptosis. Upon depletion of EZH2 by RNA interference, SPRY4-IT1 expression was restored, and transfection of SPRY4-IT1 into NSCLC cells resulted in a significant antitumoral effect, both in culture and in xenografted nude mice. Moreover, overexpression of SPRY4-IT1 was found to have a key role in the epithelial–mesenchymal transition through the regulation of E-cadherin and vimentin expression. In EZH2-knockdown cells, which characteristically showed impaired cell proliferation and metastasis, the induction of SPRY4-IT1 depletion partially rescued the oncogenic phenotype, suggesting that SPRY4-IT1 repression has an important role in EZH2 oncogenesis. Of most relevance, translation of these findings into human NSCLC tissue samples demonstrated that patients with low levels of SPRY4-IT1 expression had a shorter overall survival time, suggesting that SPRY4-IT1 could be a biomarker for poor prognosis of NSCLC.
lncRNAs play important roles in the epigenetic regulation of carcinogenesis and progression. Previous studies suggest that HOTAIR contributes to gastric cancer (GC) development, and the overexpression of HOTAIR predicts a poor prognosis. In this study, we found that HOTAIR was more highly expressed in diffuse-type GC than in intestinal type (P=0.048). In the diffuse type, there is significant relationship between HOTAIR expression and DFS (P<0.001). CDH1 was downregulated in diffuse-type GC tissues (P=0.0007) and showed a negative relationship with HOTAIR (r2=0.154, P=0.0354). In addition, HOTAIR knockdown significantly repressed migration, invasion and metastasis both in vitro and vivo and reversed the epithelial-to-mesenchymal transition in GC cells. We also showed that HOTAIR recruiting and binding to PRC2 epigenetically represses miR34a, which controls the targets C-Met (HGF/C-Met/Snail pathway) and Snail, thus contributing to GC cell-EMT process and accelerating tumor metastasis. Moreover, it is demonstrated that HOTAIR crosstalk with microRNAs during epigenetic regulation. Our results suggest that HOTAIR acts as an EMT regulator and may be a candidate prognostic biomarker and a target for new therapies in GC patients.
Exosomes are carriers of pro-tumorigenic factors that participate in glioblastoma (GBM) progression, and many fusion genes are strong driver mutations in neoplasia and are involved in tumorigenesis. However, the ability of fusion genes to be transduced by exosomes is unknown. We characterized exosomes from GBM cells harbouring and not harbouring PTPRZ1–MET fusion (ZM fusion). We also determined the effect of the exosomes from ZM fusion cells (ZM exosomes) on pro-oncogenic secretions and showed that ZM exosomes are internalized by the recipient cells. In addition, we studied the effect of ZM exosome-mediated intercellular communication in the GBM microenvironment. MET proto-oncogene expression was higher in ZM exosomes. Moreover, phosphorylated MET was detected only in ZM exosomes and not in exosomes released by non-ZM fusion GBM cells. ZM exosomes transferred to non-ZM fusion GBM cells and normal human astrocytes altered gene expression and induced epithelial–mesenchymal transition. The uptake of ZM exosomes also induced an exosome-dependent phenotype defined by GBM cell migration and invasion, neurosphere growth and angiogenesis. In addition, ZM exosomes conferred temozolomide resistance to the GBM cells, and exosome-derived ZM fusion network proteins targeted multiple pro-oncogenic effectors in recipient cells within the GBM microenvironment. Our findings show that exosomes mediate the aggressive character of GBM and demonstrate the role of ZM fusion in the exacerbation of this effect. These findings have possible implications for the foundation of gene fusion-based therapy for managing GBM.
Znf179 is a member of the RING finger protein family. During embryogenesis, Znf179 is expressed in a restricted manner in the brain, suggesting a potential role in nervous system development. In this report, we show that the expression of Znf179 is upregulated during P19 cell neuronal differentiation. Inhibition of Znf179 expression by RNA interference significantly attenuated neuronal differentiation of P19 cells and a primary culture of cerebellar granule cells. Using a microarray approach and subsequent functional annotation analysis, we identified differentially expressed genes in Znf179-knockdown cells and found that several genes are involved in development, cellular growth, and cell cycle control. Flow cytometric analyses revealed that the population of G0/G1 cells decreased in Znf179-knockdown cells. In agreement with the flow cytometric data, the number of BrdU-incorporated cells significantly increased in Znf179-knockdown cells. Moreover, in Znf179-knockdown cells, p35, a neuronal-specific Cdk5 activator that is known to activate Cdk5 and may affect the cell cycle, and p27, a cell cycle inhibitor, also decreased. Collectively, these results show that induction of the Znf179 gene may be associated with p35 expression and p27 protein accumulation, which lead to cell cycle arrest in the G0/G1 phase, and is critical for neuronal differentiation of P19 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.