We study processes that consist of deterministic evolution punctuated at random times by disturbances with random severity; we call such processes semistochastic. Under appropriate assumptions such a process admits a unique stationary distribution. We develop a technique for establishing bounds on the rate at which the distribution of the random process approaches the stationary distribution. An important example of such a process is the dynamics of the carbon content of a forest whose deterministic growth is interrupted by natural disasters (fires, droughts, insect outbreaks, etc.).2010 Mathematics Subject Classification. Primary: 34F05, 60J25, 92D25; Secondary: 60Gxx, 92Bxx.