2023
DOI: 10.48550/arxiv.2302.14383
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Linear Spaces of Meanings: the Compositional Language of VLMs

Abstract: We investigate compositional structures in vector data embeddings from pre-trained vision-language models (VLMs). Traditionally, compositionality has been associated with algebraic operations on embeddings of words from a pre-existing vocabulary. In contrast, we seek to approximate label representations from a text encoder as combinations of a smaller set of vectors in the embedding space. These vectors can be seen as "ideal words" which can be used to generate new concepts in an efficient way. We present a th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 30 publications
0
0
0
Order By: Relevance