Yogyakarta earthquake, Mw 6.3, 27 May 2006 had killed 5,571 victims and destroyed more than 1 million buildings. This incident became the most destructive earthquake disaster over the last 11 years in Indonesia. Earthquake mitigation plan in the area has been carried out by understands the location of the fault. The location of the fault is still unclear among geoscientists until now. In this case, analysis of the aftershocks using oct-tree importance sampling method was applied to support the location of the fault that responsible for the 2006 Yogyakarta earthquake. Oct-tree importance sampling is a method that is recursively subdividing the solution domain into exactly eight children for estimating properties of a particular distribution. The final result of the subdividing process is a cell that has a maximum Probability Density Function (PDF) and identified as the location of the hypocenter. Input data consists of the arrival time of the P wave and S wave of the aftershocks catalog from 3-7 June 2006 and the coordinate of the 12 seismometers, and 1D velocity model of the study area. Based on the hypocenter distribution of the aftershocks data with the proposed method show a clearer trend of the fault compared with the aftershocks distribution calculated with the Hypo71 program. The fault trend has a strike orientation of N 42° E with a dip angle of 80° parallel with the fault scarp along the Opak River at the distance of about 15 km to the east. This fault trend is similar with the fault orientation obtained using the Double Difference Algorithm.