Abstract-The interrelationships among low density lipoprotein (LDL) particle size, plasma triglyceride (TG), and high density lipoprotein cholesterol (HDL-C) are well established and may involve underlying genetic influences. This study evaluated common genetic effects on LDL size, TG, and HDL-C by using data from 85 kindreds participating in the Genetic Epidemiology of Hypertriglyceridemia (GET) Study. A multivariate, maximum likelihood-based approach to quantitative genetic analysis was used to estimate the additive effects of shared genes and shared, unmeasured nongenetic factors on variation in LDL size and in plasma levels of TG and HDL-C. A significant (PϽ0.001) proportion of the variance in each trait was attributable to the additive effects of genes. Maximum-likelihood estimates of heritability were 0.34 for LDL size, 0.41 for TG, and 0.54 for HDL-C. Significant (PϽ0.001) additive genetic correlations ( G ), indicative of the shared additive effects of genes on pairs of traits, were estimated between all 3 trait pairs: for LDL size and TG G ϭϪ0.87, for LDL size and HDL-C G ϭ0.65, and for HDL-C and TG G ϭϪ0.54. A similar pattern of significant environmental correlations between the 3 trait pairs was also observed. These results suggest that a large proportion of the well-documented correlations in LDL size, TG, and HDL-C are likely attributable to the influence of the same gene(s) in these families. That is, the gene(s) that may contribute to decreases in LDL size also contribute significantly to higher plasma levels of TG and lower plasma levels of HDL-C. These relationships may be useful in identifying genes responsible for the associations between these phenotypes and susceptibility to cardiovascular disease in these families.