Purpose
Integrin αvβ3 plays an important role in tumor angiogenesis, growth and metastasis. We have tested a targeted probe to visualize integrin receptor expression in glioblastomas using near-infrared fluorescent (NIRF) imaging.
Experimental design
A transgenic glioblastoma mouse model (RCAS-PDGF-driven/tv-a glioblastoma, which mimics the infiltrative growth pattern of human glioblastomas), and two human orthotopic glioblastoma models, (U-87 MG with high integrin β3 expression and TS543 with low integrin β3 expression), were studied. An integrin-targeting NIRF probe, IRDye 800CW-cyclic-RGD peptide (IRDye 800CW-RGD), was tested by in vivo and ex vivo NIRF imaging.
Results
We demonstrate that the IRDye 800CW-RGD peptide: 1) specifically binds to integrin receptors, 2) is selectively localized to glioblastoma tissue with overexpressed integrin receptors and is retained over prolonged periods of time, 3) is associated with minimal autofluorescence and photobleaching due to imaging at 800 nm, 4) provides delineation of tumor tissue with high precision due to a high tumor-to-normal brain fluorescence ratio (79.7±6.9, 31.2±2.8, and 16.3±1.3) in the U-87 MG, RCAS-PDGF, and TS543 models, respectively; p<0.01) and 5) enables fluorescence-guided glioblastoma resection. Importantly, small foci of residual fluorescence were observed after resection was completed using white light imaging alone, and these fluorescent foci were shown to represent residual tumor tissue by histology.
Conclusions
NIRF imaging with the IRDye 800CW-RGD probe provides a simple, rapid, low-cost, non-radioactive and highly translatable approach for improved intraoperative glioblastoma visualization and resection. It also has the potential to serve as an imaging platform for noninvasive cancer detection and drug efficacy evaluation studies.