2017
DOI: 10.1016/j.eja.2016.10.008
|View full text |Cite
|
Sign up to set email alerts
|

Linking process-based potato models with light reflectance data: Does model complexity enhance yield prediction accuracy?

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
25
0
2

Year Published

2017
2017
2023
2023

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 26 publications
(29 citation statements)
references
References 47 publications
2
25
0
2
Order By: Relevance
“…On the basis of the principle and structure of the original model, the corresponding parameters were modi ed to conform to the growth characteristics of potato, and the growth process of potato was simulated, so as to output the physiological characteristic parameters and yield data and realize the model simulation function. Quiroz et al [3] proposed that the incorporation of remotely sensed data in crop growth models with different temporal resolution and level of complexity could help to improve the yield estimation in potato. Moreover, it was identi ed that LAI at the initiation of stem elongation stage was closely related to yield, thus the remote estimation of LAI at this stage could be used to indicate the yield in oilseed rape [36].…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…On the basis of the principle and structure of the original model, the corresponding parameters were modi ed to conform to the growth characteristics of potato, and the growth process of potato was simulated, so as to output the physiological characteristic parameters and yield data and realize the model simulation function. Quiroz et al [3] proposed that the incorporation of remotely sensed data in crop growth models with different temporal resolution and level of complexity could help to improve the yield estimation in potato. Moreover, it was identi ed that LAI at the initiation of stem elongation stage was closely related to yield, thus the remote estimation of LAI at this stage could be used to indicate the yield in oilseed rape [36].…”
Section: Discussionmentioning
confidence: 99%
“…Potato (Solanum tuberosum L.), a mixed grain, forage and vegetable crop [1], is the fourth most important crop in the world [2][3]. Since the launch of the potato staple food strategy in 2015 in China, potato has become another major staple food crop after rice, wheat and corn [4].…”
Section: Introductionmentioning
confidence: 99%
“…Potato disease modelling, foresight, further model development Kroschel et al, 2013 [167]; Sporleder et al, 2013 [168]; Condori et al, 2014 [169]; Carli et al, 2014 [170]; Kleinwechter et al, 2016 [171]; Kroschel et al, 2017 [172]; Fleisher et al, 2017 [173]; Raymundo et al, 2017 [174]; Raymundo et al, 2017 [175]; Quiroz et al, 2017 [176]; Ramirez et al, 2017 [177]; Mujica et al, 2017 [178]; Scott and Kleinwechter, 2017 [179]; Petsakos et al, 2018 [180] AfricaRice: Model improvement, yield gap analysis, genotype × environment interactions, impact of climate change van Oort et al, 2014 [181]; van Oort et al, 2015 [182]; van Oort et al, 2015 [183]; Dingkuhn et al, 2015 [184]; van Oort et al, 2016 [185]; El-Namaky and van Oort, 2017 [186]; van Oort et al, 2017 [187]; Dingkuhn et al, 2017 [104,105]; van Oort and Zwart, 2018 [188]; van Oort, 2018 [189], Duku et al, 2018 [190] ICRAF: Agroforestry and intercropping modelling Africa Luedeling et al, 2014 [191]; Araya et al, 2015 [192]; Luedeling et al, 2016 [193]; Smethurst et al, 2017 [194], Masikati et al, 2017 [195] ILRI: crop-livestock-farm interactions Van Wijk et al, 2014 [196]; Herrero et al, 2014 [197] IITA: Modelling on Yams in West Africa Marcos et al, 2011 [198]; Cornet et al, 2015 [199]; Cornet et al, 2016 [200] ICARDA: Climate variability and change impact studies, foresight, conservation agriculture impact, genotype × environment interactions Sommer et al, 2013 [201]; Bobojonov and Aw-Hassan, 2014…”
Section: Cipmentioning
confidence: 99%
“…速率, 使RuBP浓度不足而限制光合速率, 即RuBP 再生速率限制阶段 (Farquhar et al, 1980;von Caemmerer & Farquhar, 1981;Harley & Sharkey, 1991;von Caemmerer, 2000) (Miao et al, 2009)可以由以下公式计算得到, 即: Miao et al, 2009;Yin et al, 2009; 唐星林等, 2017a)。 模型II较全面地考虑了光合作用的原初反应过 程 (Ye et al, 2013a(Ye et al, , 2013b, 可定量研究与植物光合 作用原初反应过程中的激子传递效率和捕光色素分 子的参数变化情况以及这些参数对光的响应问题, 并且用其中的参数可以讨论植物的PSII动力学下调 (Ralph & Gademann, 2005;Kirchhoff et al, 2007;Brading et al, 2011) (Ježilová et al, 2015;Mayoral et al, 2015;Park et al, 2016;Bellucco et al, 2017;Quiroz et al,…”
Section: 表3 分配到碳同化和光呼吸途径的光合电子流unclassified
“…Chinese Journal of Plant Ecology, 42, 498-507. DOI: 10.17521/cjpe.2017.0320 植物的光合作用受光强、CO 2 浓度和温度等环 境因子的影响。Farquhar等(1980)以及其他学者 (von Caemmerer & Farquhar, 1981;Harley & Sharkey, 1991;von Caemmerer, 2000von Caemmerer, , 2013根据核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)酶动力学反应和核 酮糖-1,5-二磷酸(RuBP)再生反应化学计量学, 提出 C 3 植物光合生化模型(简称FvCB模型)。现在, FvCB 模型因能描述稳态的碳同化过程且具有明确的生物 学意义而被广泛应用于光合作用研究 (Dubois et al, 2007;Farquhar & Busch, 2017)。 生化模型由描述Rubisco酶活性限制、RuBP再 生限制和磷酸丙糖利用率(TPU)限制等3个过程的 子模型构成。其中非直角双曲线模型(简称模型I)是 生化模型的主要子模型 (Long & Bernacchi, 2003;Dubois et al, 2007;Farquhar & Busch, 2017; 梁星云 和刘世荣, 2017; 唐星林等, 2017a, 2017b)。在植物 光合作用对光响应曲线(A n -I曲线, I为光合有效辐射) 的拟合中, 模型I得到广泛的应用和验证, 但由此模 型拟合光响应曲线得到的最大净光合速率(A nmax )显 著高于实测值 (Calama et al, 2013;王荣荣等, 2013;冷寒冰等, 2014;Ježilová et al, 2015;Mayoral et al, 2015;Park et al, 2016;Bellucco et al, 2017;Quiroz et al, 2017), 这将高估植物的光合能力; 并且该模 型不能拟合植物发生光抑制时的光响应曲线 (Ye, 2007;dos Santos et al, 2013;王海珍等, 2017) (Cheng et al, 2001;Long & Bernacchi, 2003 (Serôdio et al, 2013;Li et al, 2015Li et al, , 2018Sun et al, 2015;Gao et al, 2017aGao et al, , 2017bShimada et al, 2017)…”
unclassified