Abstract. Pulsed systems are characterized by boom and bust cycles of resource production that are expected to cascade through multiple trophic levels. Many of the consumers within pulsed resource systems have specific adaptations to cope with these cycles that may serve to either amplify or dampen their community-wide consequences. We monitored a seed predator, the eastern chipmunk (Tamias striatus), in an American beech (Fagus grandifolia) dominated forest, and used capture-mark-recapture analyses to estimate chipmunk vital rates and relate them to interannual variation in beech seed production. The summer activity and reproduction of adults anticipated autumn beech production, with high activity and intense reproduction occurring in summers prior to beech masts. Chipmunks also reproduced every spring following a beech mast. However, adult survival was independent of beech production. In contrast, juvenile survival was lower in years of mast failure than in years of mast production, but their activity was consistently high and independent of beech production. Population growth was strongly affected by the number of juveniles and therefore by beech seed production, which explains nearly 70% of variation in population growth. Our results suggest that a combination of resource-dependent reproduction and variable activity levels associated with anticipation and response to resource pulses allows consumers to buffer potential deleterious effects of low food abundance on their survival.