Aims. Outflows driven by active galactic nuclei (AGN) are expected to have a significant impact on host galaxy evolution, but the matter of how they are accelerated and propagated on galaxy-wide scales is still under debate. This work addresses these questions by studying the link between X-ray, nuclear ultra-fast outflows (UFOs), and extended ionised outflows, for the first time, in two quasars close to the peak of AGN activity (z ∼ 2), where AGN feedback is expected to be more effective. Methods. Our selected targets, HS 0810+2554 and SDSS J1353+1138, are two multiple-lensed quasars at z ∼ 1.5 with UFO detection that have been observed with the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematical analysis of the [O III]λ5007 optical emission line to trace the presence of ionised outflows. Results. We detected spatially resolved ionised outflows in both galaxies, extended more than 8 kpc and moving up to v > 2000 km/s. We derived mass outflow rates of ∼12 M yr −1 and ∼2 M yr −1 for HS 0810+2554 and SDSS J1353+1138. Conclusions. Compared with the co-hosted UFO energetics, the ionised outflow energetics in HS 0810+2554 is broadly consistent with a momentum-driven regime of wind propagation, whereas in SDSS J1353+1138, it differs by about two orders of magnitude from theoretical predictions, requiring either a massive molecular outflow or a high variability of the AGN activity to account for such a discrepancy. By additionally considering our results together with those from the small sample of well-studied objects (all local but one) having both UFO and extended (ionised, atomic, or molecular) outflow detections, we found that in 10 out of 12 galaxies, the large-scale outflow energetics is consistent with the theoretical predictions of either a momentum-or an energy-driven scenario of wind propagation. This suggests that such models explain the acceleration mechanism of AGN-driven winds on large scales relatively well.