Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Обзор посвящен классу интегрируемых гамильтоновых систем и классу интегрируемых биллиардов, а также недавним результатам авторов и их учеников по задаче сравнения этих классов с точки зрения послойной гомеоморфности их слоений Лиувилля. Ключевым инструментом здесь оказались введенные В. В. Ведюшкиной биллиарды на кусочно-плоских CW-комплексах - топологические биллиарды и биллиардные книжки. Приведено построение класса эволюционных (силовых) биллиардов, введенных недавно А. Т. Фоменко и позволяющих моделировать систему сразу в нескольких неособых зонах энергии при помощи одного биллиарда, а также его применение для геодезических потоков на двумерных поверхностях и систем механики. Обсуждаются другие интегрируемые обобщения классического биллиарда, включая биллиарды с потенциалами, биллиарды в магнитном поле, биллиарды с проскальзыванием. Биллиардные книжки с потенциалом Гука, склеенные из плоских софокусных или круговых столов, моделируют четырехмерные полулокальные особенности слоений интегрируемых систем, содержащие невырожденные положения равновесия. Рассмотрение пересечения нескольких софокусных квадрик в $\mathbb{R}^n$ приводит к обобщению теоремы Якоби-Шаля. Библиография: 144 названия.
Обзор посвящен классу интегрируемых гамильтоновых систем и классу интегрируемых биллиардов, а также недавним результатам авторов и их учеников по задаче сравнения этих классов с точки зрения послойной гомеоморфности их слоений Лиувилля. Ключевым инструментом здесь оказались введенные В. В. Ведюшкиной биллиарды на кусочно-плоских CW-комплексах - топологические биллиарды и биллиардные книжки. Приведено построение класса эволюционных (силовых) биллиардов, введенных недавно А. Т. Фоменко и позволяющих моделировать систему сразу в нескольких неособых зонах энергии при помощи одного биллиарда, а также его применение для геодезических потоков на двумерных поверхностях и систем механики. Обсуждаются другие интегрируемые обобщения классического биллиарда, включая биллиарды с потенциалами, биллиарды в магнитном поле, биллиарды с проскальзыванием. Биллиардные книжки с потенциалом Гука, склеенные из плоских софокусных или круговых столов, моделируют четырехмерные полулокальные особенности слоений интегрируемых систем, содержащие невырожденные положения равновесия. Рассмотрение пересечения нескольких софокусных квадрик в $\mathbb{R}^n$ приводит к обобщению теоремы Якоби-Шаля. Библиография: 144 названия.
The survey is devoted to the class of integrable Hamiltonian systems and the class of integrable billiard systems and to the recent results of the authors and their students on the problem of comparison of these classes from the point of view of leafwise homeomorphy of their Liouville foliations. The key tool here are billiards on piecewise planar CW-complexes - topological billiards and billiard books - introduced by Vedyushkina. A construction of the class of evolutionary (force) billiards, introduced recently by Fomenko, is presented, enabling one to model a system in several non-singular energy ranges by a single billiard system, and the use of this class for geodesic flows on two-dimensional surfaces and some systems in mechanics is demonstrated. Some other integrable generalizations of classical billiard systems, including billiards with potentials, billiards in magnetic fields, and billiards with slipping, are discussed. Billiard books with Hooke potentials glued of planar confocal or circular tables, model four-dimensional semilocal singularities of Liouville foliations for integrable systems that contain non-degenerate equilibria. Considering the intersections of several confocal quadrics in $\mathbb{R}^n$ results in a generalization of the Jacobi-Chasles theorem. Bibliography: 144 titles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.