BackgroundPure 1, 3-diacylglycerols (1, 3-DAG) have been considered to be significant surfactants in food, cosmetics and pharmaceutical industries, as well as the effect on obesity prevention.MethodsIn this study, a vacuum-driven air bubbling operation mode was developed and evaluated for the enzymatic synthesis of 1, 3-DAG of saturated fatty acids, by direct esterification of glycerol with fatty acids in a solvent-free system. The employed vacuum-driven air bubbling operation mode was comparable to vacuum-driven N2 bubbling protocol, in terms of lauric acid conversion and 1, 3-dilaurin content.ResultsSome operation parameters were optimized, and 95.3% of lauric acid conversion and 80.3% of 1, 3-dilaurin content was obtained after 3-h reaction at 50°C, with 5 wt% of Lipozyme RM IM (based on reactants) amount. Of the lipases studied, both Lipozyme RM IM and Novozym 435 exhibited good performance in terms of lauric acid conversion. Lipozyme TL IM, however, showed low activity. Lipozyme RM IM showed good operational stability in this operation protocol, 80.2% of the original catalytic activity remained after 10 consecutive batch applications. Some other 1, 3-DAG were prepared and high content was obtained after purification: 98.5% for 1, 3-dicaprylin, 99.2% for 1, 3-dicaprin, 99.1% for 1, 3-dilaurin, 99.5 for 1, 3-dipalmitin and 99.4% for 1, 3-disterin.ConclusionThe established vacuum-driven air bubbling operation protocol had been demonstrated to be a simple-operating, cost-effective, application practical and efficient methodology for 1, 3-DAG preparation.