The textile sector, an important economic driving force in Antioquia, Colombia, uses great quantities of thermal energy mainly produced by coal combustion, which holds enormous potential for recovery. One of the most common processes in a textile plant is heat setting, which uses a significant amount of thermal energy to adjust the properties of fabrics, such as shrinking, stiffness, pull strength, width, and stretching. In this study, we calculate the mass and energy balances of a stenter and propose a system to recover the energy available in its exhaust gases. The energy recovery potential in this heat setting process is 800.97 kW, which represents 87.2% of the total input energy. Additionally, we evaluate different heat exchangers to recover the available heat and present criteria to select them. Finally, thermosyphons, whose thermal efficiency was theoretically determined here, offer a promising alternative for heat recovery from actual stenters.