Drug development of cholesteryl ester transfer protein (CETP) inhibition to prevent coronary heart disease (CHD) has yet to deliver licensed medicines. To distinguish compound from drug target failure, we compared evidence from clinical trials and Mendelian randomization (MR) results. Findings from meta-analyses of CETP inhibitor trials (≥ 24 weeks follow-up) were used to judge between-compound heterogeneity in treatment effects. Genetic data were extracted on 190 + pharmacologically relevant outcomes; spanning 480,698 − 21,770 samples and 74,124-4,373 events. Drug target MR of protein concentration was used to determine the on-target effects of CETP inhibition and compared to that of PCSK9 modulation. Fifteen eligible CETP inhibitor trials of four compounds were identified, enrolling 79,961 participants. There was a high degree of heterogeneity in effects on lipids, lipoproteins, blood pressure, and clinical events. For example, dalcetrapib and evacetrapib showed a neutral effect, torcetrapib increased, and anacetrapib decreased cardiovascular disease (CVD); heterogeneity p-value < 0.001. In drug target MR analysis, lower CETP concentration (per \(\mu\)g/ml) was associated with CHD (odds ratio 0.95; 95%CI 0.91; 0.99), heart failure (0.95; 95%CI 0.92; 0.99), chronic kidney disease (0.94 95%CI 0.91; 0.98), and age-related macular degeneration (1.69; 95%CI 1.44; 1.99). Lower PCSK9 concentration was associated with a lower risk of CHD, heart failure, atrial fibrillation and stroke, and increased risk of Alzheimer’s disease and asthma. In conclusion, previous failures of CETP inhibitors are likely compound related. CETP inhibition is expected to reduce risk of CHD, heart failure, and kidney disease, but potentially increase risk of age-related macular disease.