The polarization status of porcine alveolar macrophages (PAMs) determines the infectivity of porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV infection skews macrophage polarization toward an M2 phenotype, followed by T-cells inactivation. CD163, one of the scavenger receptors of M2 macrophages, has been described as a putative receptor for PRRSV. In this study, we examined two types of PRRSV-2-derived recombinant antigens, A1 (g6Ld10T) and A2 (lipo-M5Nt), for their ability to mediate PAM polarization and T helper (Th1) response. A1 and A2 were composed of different combination of ORF5, ORF6, and ORF7 in full or partial length. To enhance the adaptive immunity, they were conjugated with T cells epitopes or lipidated elements, respectively. Our results showed that CD163+ expression on PAMs significantly decreased after being challenged with A1 but not A2, followed by a significant increase in pro-inflammatory genes (TNF-α, IL-6, and IL-12). In addition, next generation sequencing (NGS) data show an increase in T-cell receptor signaling in PAMs challenged with A1. Using a co-culture system, PAMs challenged with A1 can induce Th1 activation by boosting IFN-γ and IL-12 secretion and TNF-α expression. In terms of innate and T-cell-mediated immunity, we conclude that A1 is regarded as a potential vaccine for immunization against PRRSV infection due to its ability to reverse the polarization status of PAMs toward pro-inflammatory phenotypes, which in turn reduces CD163 expression for viral entry and increases immunomodulation for Th1-type response.