Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E), membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression.
Type III interferons (IFNs) play a vital role in maintaining the antiviral state of the mucosal epithelial surface in the gut, and in turn, enteric viruses may have evolved to evade the type III IFN responses during infection. To study the possible immune evasion of the type III IFN response by porcine epidemic diarrhea virus (PEDV), a line of porcine intestinal epithelial cells was developed as a cell model for PEDV replication. IFN-λ1 and IFN-λ3 inhibited PEDV replication, indicating the anti-PEDV activity of type III IFNs. Of the 21 PEDV proteins, nsp1, nsp3, nsp5, nsp8, nsp14, nsp15, nsp16, open reading frame 3 (ORF3), E, M, and N were found to suppress type III IFN activities, and IRF1 (interferon regulatory factor 1) signaling mediated the suppression. PEDV specifically inhibited IRF1 nuclear translocation. The peroxisome is the innate antiviral signaling platform for the activation of IRF1-mediated IFN-λ production, and the numbers of peroxisomes were found to be decreased in PEDV-infected cells. PEDV nsp1 blocked the nuclear translocation of IRF1 and reduced the number of peroxisomes to suppress IRF1-mediated type III IFNs. Mutational studies showed that the conserved residues of nsp1 were crucial for IRF1-mediated IFN-λ suppression. Our study for the first time provides evidence that the porcine enteric virus PEDV downregulates and evades IRF1-mediated type III IFN responses by reducing the number of peroxisomes. Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that emerged in swine in the United States and has caused severe economic losses. PEDV targets intestinal epithelial cells in the gut, and intestinal epithelial cells selectively induce and respond to the production of type III interferons (IFNs). However, little is known about the modulation of the type III IFN response by PEDV in intestinal epithelial cells. In this study, we established a porcine intestinal epithelial cell model for PEDV replication. We found that PEDV inhibited IRF1-mediated type III IFN production by decreasing the number of peroxisomes in porcine intestinal epithelial cells. We also demonstrated that the conserved residues in the PEDV nsp1 protein were crucial for IFN suppression. This study for the first time shows PEDV evasion of the type III IFN response in intestinal epithelial cells, and it provides valuable information on host cell-virus interactions not only for PEDV but also for other enteric viral infections in swine.
Hepatitis E virus (HEV) is a very important public health concern in many developing countries where epidemics of hepatitis E are common. Sporadic cases of clinical hepatitis E not only occur in these countries but also occur uncommonly in patients with no known epidemiological exposure to HEV in industrialized countries. The source of infection in industrialized countries is unknown but it has been suggested that animals might serve as a reservoir for HEV in both settings. We recently identified and characterized an HEV strain (swine HEV) that infects large numbers of pigs in the United States. To assess the potential of pigs to serve as a global reservoir of HEV, we measured the prevalence of HEV antibodies in pigs in two countries where hepatitis E is endemic and two countries where it is not. Swine herds in all four countries contained many pigs that were seropositive for IgG anti-HEV, although the percentage of seropositive pigs varied greatly from herd to herd. A very limited number of pig handlers in the two endemic countries were also tested and most of them were found to be seropositive for HEV. The results from this study suggest that hepatitis E is enzootic in pigs regardless of whether HEV is endemic in the respective human population. J. Med. Virol. 59:297-302, 1999. Published 1999 Wiley-Liss, Inc.
A highly pathogenic pig disease emerged in China in 2006, which was characterized by prolonged high fever, red discoloration of the body, and blue ears associated with high mortality. Porcine reproductive and respiratory syndrome virus (PRRSV) was isolated as the single most prominent virus in the samples collected from affected pigs. The full-length genomic sequence of the virus revealed two distinct deletions in the non-structural protein 2 (NSP2) in comparison to all previously reported North American genotype PRRSV. Through extensive surveys in 14 different provinces, 56 additional PRRSV isolates were obtained from affected farms. All of the isolates were found to contain identical deletions in NSP2. To confirm the etiology, eight 60-day-old PRRSV-free pigs were divided into two groups and the test group was intranasally infected at a titer of 2 x 10(5.0) tissue culture infectious dose 50 per pig. The inoculated pigs all died at 7, 8, 12, 16, or 21 days post-inoculation with their clinical and pathological findings similar to those in the field. The viruses recovered from dead pigs were identical to the inoculated virus in NSP2 and GP5 genes. Our study shows that the recently emerged PRRSV in China is characterized by two discontiguous deletions in NSP2 and is the cause for the current epizootics in China.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19) that emerged in human populations recently. Severely ill COVID-19 patients exhibit the elevation of proinflammatory cytokines, and such an unbalanced production of proinflammatory cytokines is linked to acute respiratory distress syndrome with high mortality in COVID-19 patients. Our study provides evidence that the ORF3a, M, ORF7a, and N proteins of SARS-CoV-2 were NF-κB activators. The viral sequence from infected zoo lions belonged to clade V, and a single mutation of G251V is found for ORF3a gene compared to all other clades. No significant functional difference was found for clade V ORF3a, indicating the NF-κB activation is conserved among COVID-19 variants. Of the four viral proteins, the ORF7a protein induced the NF-κB dictated proinflammatory cytokines including IL-1α, IL-1β, IL-6, IL-8, IL-10, TNF-α, and IFNβ. The ORF7a protein also induced IL-3, IL-4, IL-7, IL-23. Of 15 different chemokines examined in the study, CCL11, CCL17, CCL19, CCL20, CCL21, CCL22, CCL25, CCL26, CCL27, and CXCL9 were significantly upregulated by ORF7. These cytokines and chemokines were frequently elevated in severely ill COVID-19 patients. Our data provide an insight into how SARS-CoV-2 modulates NF-κB signaling and inflammatory cytokine expressions. The ORF7a protein may be a desirable target for strategic developments to minimize uncontrolled inflammation in COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.