Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E), membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression.
Precise temporal control is needed for RNA viral genomes to translate sufficient replication-required products before clearing ribosomes and initiating replication. A 39 translational enhancer in Turnip crinkle virus (TCV) overlaps an internal T-shaped structure (TSS) that binds to 60S ribosomal subunits. The higher-order structure in the region was examined through alteration of critical sequences revealing novel interactions between an H-type pseudoknot and upstream residues, and between the TSS and internal and terminal loops of an upstream hairpin. Our results suggest that the TSS forms a stable scaffold that allows for simultaneous interactions with external sequences through base pairings on both sides of its large internal symmetrical loop. Binding of TCV RNA-dependent RNA polymerase (RdRp) to the region potentiates a widespread conformational shift with substantial rearrangement of the TSS region, including the element required for efficient ribosome binding. Degrading the RdRp caused the RNA to resume its original conformation, suggesting that the initial conformation is thermodynamically favored. These results suggest that the 39 end of TCV folds into a compact, highly interactive structure allowing RdRp access to multiple elements including the 39 end, which causes structural changes that potentiate the shift between translation and replication.
Circularization of cellular mRNAs is a key event prior to translation initiation. We report that efficient translation of Saguaro cactus virus (SCV) requires a 3' translational enhancer (PTE) located partially in coding sequences. Unlike a similar PTE reported in the 3' UTR of Pea enation mosaic virus that does not engage in an RNA:RNA interaction (Wang Z. et al., J. Biol. Chem. 284, 14189–14202, 2009), the SCV PTE participates in long distance RNA:RNA interactions with hairpins located in the p26 ORF and in the 5' UTR of one subgenomic RNA. At least two additional RNA:RNA interactions are also present, one of which involves the p26 initiation codon. Similar PTE can be found in six additional carmoviruses that can putatively form long-distance interactions with 5' hairpins located in comparable positions.
Plus-strand RNA viruses serve as templates for translation and then transcription by newly synthesized RdRp. A ribosome-binding tRNA-shaped structure (TSS) and upstream hairpin H4 in the 3′ UTR of Turnip crinkle virus (TCV) play key roles in translation and transcription. Second-site mutations generated to compensate for altering the critical asymmetric internal loop of H4 included a three-to-two base alteration in the terminal loop of a 3′ proximal hairpin (Pr) located downstream of the TSS. Unlike the non-deleterious three base alteration, single mutations in Pr loop were detrimental for RdRp transcription while enhancing translation and RdRp binding. One deleterious mutation in the Pr loop altered the structures of both the TSS and H4. These complex interactions in the 3′ UTR support a compact structural arrangement likely permitting RdRp access to a number of residues within a 195-base region including the 3′ end that are necessary for efficient transcription initiation.
BackgroundLactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards.Methodology/Principal FindingsTo better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE) on bovine mammary tissue at three time points (on approximately day 35 before parturition (−35 d), day 7 before parturition (−7 d) and day 3 after parturition (+3 d)). Approximately 6.2 million (M), 5.8 million (M) and 6.1 million (M) 21-nt cDNA tags were sequenced in the three cDNA libraries (−35 d, −7 d and +3 d), respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥2 or ≤−2 and a false discovery rate (FDR) of ≤0.001, a total of 812 genes were significantly differentially expressed at −7 d compared with −35 d (stage I). Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with −7 d (stage II), and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with −35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes.ConclusionsThe results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell's resources towards lactation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.