Whey protein is a renewable and environmentally safe biomaterial, a by-product of cheese production. It can be utilized for non-food applications for value-added products. The substances glyoxal (GO), glutaraldehyde (GA), polymeric methylene biphenyl diisocyanate (p-MDI), urea-formaldehyde (UF) resin, and phenol-formaldehyde oligomer (PFO) that contain reactive groups were applied together with whey protein as modifier in order to increase crosslinking density and molecular weight for improving the bond strength and water resistance of whey protein. A water-resistant and environmentally safe whey protein-based wood adhesive for plywood was developed by evaluating the effects of these modifiers on the bond strength, bond durability, and free formaldehyde emission of the resulting plywood panels. Results of FTIR and SEM analyses and bond evaluation indicated that GO, GA, and p-MDI were not suitable to modify whey proteins due to their high reactivity with whey proteins, causing phase separation. UF resin was not a good modifier for whey proteins because of either its poor water-resistance or higher emission of hazardous formaldehyde. Whey protein adhesives modified with PFO had a dry shear bond strength of 1.98 MPa and a 28h-boiling-dry-boiling wet shear strength of 1.73 MPa, which were both much higher than the required values for structural use according to standard JIS K6806-2003, while its formaldehyde emission was 0.067mg/L, much lower than the required value for green plywood according to standard JIS A5908.