In this paper, a study concerning the soil liquefaction potential in the city of Catania is presented. The stress-based liquefaction analysis framework for cohesionless soil includes a function that describes fundamental aspects of dynamic site response, i.e., the shear stress reduction coefficient, rd, which depends on several factors (depth; earthquake and ground motion characteristics; dynamic soil properties). Various relationships of rd are reported in literature because of the importance of assessment of CSR. Herein, new variations of rd with depth have been obtained using different deterministic earthquake scenarios as input motion. The relationships are based on large numbers of site response analyses for different site conditions. The new relationships obtained have been used for the evaluation of the liquefaction potential in the area of the Catania Harbour. The liquefaction resistance has been evaluated by the horizontal stress index (KD) from seismic dilatometer Marchetti tests (SDMTs). Various correlations were developed to estimate the CRR from KD, expressed in form of CRR-KD curves to differentiate between liquefiable and non-liquefiable zones. In this study three different CRR-KD curves have been used.