Water forms two glassy waters, low-density and high-density amorphs, which undergo a reversible polyamorphic transition with the change in pressure. The two glassy waters transform into the different liquids, low-density liquid (LDL) and high-density liquid (HDL), at high temperatures. It is predicted that the two liquid waters also undergo a liquid–liquid transition (LLT). However, the reversible LLT, particularly the LDL-to-HDL transition, has not been observed directly due to rapid crystallization. Here, I prepared a glassy dilute trehalose aqueous solution (0.020 molar fraction) without segregation and measured the isothermal volume change at 0.01 to 1.00 GPa below 160 K. The polyamorphic transition and the glass-to-liquid transition for the high-density and low-density solutions were examined, and the liquid region where both LDL and HDL existed was determined. The results show that the reversible polyamorphic transition induced by the pressure change above 140 K is the LLT. That is, the transition from LDL to HDL is observed. Moreover, the pressure hysteresis of LLT suggests strongly that the LLT has a first-order nature. The direct observation of the reversible LLT in the trehalose aqueous solution has implications for understanding not only the liquid–liquid critical point hypothesis of pure water but also the relation between aqueous solution and water polyamorphism.