Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors. Physical Review D, 96(6), 062004.There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.http://eprints.gla.ac.uk/148989/ We report on the performance of the capacitive gap-sensing system of the Gravitational Reference Sensor (GRS) onboard the LISA Pathfinder (LPF) spacecraft. From in-flight measurements, the system has demonstrated a performance, down to 1 mHz, that is ranging between 0.7 aF Hz −1/2 and 1.8 aF Hz −1/2 . That translates into a sensing noise of the test mass motion within 1.2 nm Hz −1/2 and 2.4 nm Hz −1/2 in displacement and within 83 nrad Hz −1/2 and 170 nrad Hz −1/2 in rotation. This matches the performance goals for LPF and it allows the successful implementation of the gravitational waves observatory LISA. A 1/f tail has been observed for frequencies below 1 mHz, the tail has been investigated in detail with dedicated in-flight measurements and a model is presented in the paper. A projection of such noise to frequencies below 0.1 mHz shows that an improvement of performance at those frequencies is desirable for the next generation of GRS sensors for space-borne gravitational waves observation.
2PACS numbers: 04.80. Nn, 95.55.Ym