Mud volcanism can provide a mechanism for hot hydrothermal muds and brines to ascend from dehydrated, serpentinized peridotite at the mantle-crust contact (Moho). Such mud volcanism may have occurred on a regional scale across northern Europe when high to low density brines erupted as metalliferous, hot, hydrothermal, hydrocarbon-rich mud slurries. These mud-brines were delivered to the Permo-Triassic unconformity in a shallow Zechstein sea during the Pangea breakup through a series of deep-seated conduits that connected the serpentosphere to the Zechstein unconformity. A three-stage, hot, hydrothermal, mud volcanic model can explain the Kupferschiefer-Zechstein-Rote Fäule sequence of polymetallic, hydrocarbon, and saline mineralization as a consequence of a three-stage, dehydration sequence of deep serpentospheric uppermost mantle. Dehydration products of mantle-heated serpentinite were produced in three sequential stages: (1) lizardite to antigorite, (2) antigorite to chlorite-harzburgite, and (3) chlorite-harzburgite to garnet peridotite. The dehydration of serpentine correlates to three stages of Zechstein-Kupferschiefer mineralization: (1) Weissliegend-Kupferschiefer Cu-Ag-carbonaceous shale and silica sand deposits, to (2) Zechstein saline deposits, to (3) Rote Fäule hematite-Au-REE-U cross-cutting metallization.