During the past decade a number of pesticides, industrial by-products, manufactured products such as plastics, and natural chemicals have been shown to disrupt the endocrine system. These chemicals are referred to as endocrine-disrupting chemicals (EDCs). These chemicals have received considerable attention, in part because endocrine disruption is a relatively unstudied area in toxicology and is only recently being taken into account in risk assessment. The focus here is on EDCs with estrogenic activity (EEDCs), which are chemicals that act as hormone mimics via estrogen receptor mechanisms; this is currently the largest group of known endocrine disruptors. The main purpose of this article is to present an overview of the mechanisms of hormone action that provide the basis for understanding how EEDCs have the potential to be biologically active at low, environmentally relevant doses. Our strategy is to discuss the receptor mechanisms mediating responses to a natural hormone, 17β-estradiol (E 2 ), and then to use this information as the basis for describing the low-dose effects of chemicals that disrupt the normal functioning of this hormonal system, either by mimicking, modulating, or antagonizing the activity of the hormone. We have chosen to use estrogen as our example because there is more known about the biology of estrogens and xenoestrogens than other components of the endocrine system for which there is evidence for disruption by environmental chemicals; however, the information presented here is applicable to endocrine disruptors that interfere with other hormonal systems.We will begin by briefly reviewing information concerning the relationship between dose, receptor occupancy, and responses (such as cell proliferation) after binding of E 2 to estrogen receptors (ER-α) in cultured human MCF-7 breast cancer cells. A number of specific factors influence the dose of an EEDC that reaches the target cells to produce a response. These factors include route of administration, absorption, distribution, metabolism, rate of clearance, plasma transport, cell uptake, affinity for estrogen receptor subtype in the cell, and the interaction of the ligand-receptor complex with tissue-specific factors comprising the transcriptional apparatus. This mechanistic information provides the basis for establishing the dose at the target site in cells (nuclear receptors associated with DNA or more recently identified receptors associated with the cell membrane) for an EEDC required to elicit a biological response similar to that produced by a dose of E 2 with equal estrogenic activity. Modeling that takes into account each of these factors would encompass physiologically based pharmacokinetic information (1), as well as quantitative structure-activity relationships (QSAR) (2,3). We have previously discussed the factors that influence access of E 2 and EEDCs from blood to estrogen receptors in cells elsewhere (4-6). Our primary focus in this review is on the latter part of the overall process that occurs once an estrogenic chemic...