We dedicate this paper to the memory of coauthor Isidore (Izzy) Zietz, who died at age 93 while this paper was in review. After contributing to the early theoretical foundation for analysis of airborne magnetic surveys, Izzy became a leading advocate for aeromagnetic survey acquisition and interpretation throughout the U.S., combining surveys into regional, state, and national maps, and working with regional geologists in interpreting geophysical anomalies. Like many geologists, we have been energized by Izzy's contagious enthusiasm for using magnetic and gravity anomalies to delineate and characterize major tectonic features. Lessons from working with him on data from Alabama and elsewhere over the years will continue to infl uence our appreciation and understanding of aeromagnetic and gravity anomalies for interpreting the Earth's upper crust."Magnetics is never good, and gravity is even worse!" "…all of it can just be dashed." -Isidore Zietz ABSTRACT Aeromagnetic and gravity data sets obtained for Alabama (United States) have been digitally merged and fi ltered to enhance upper-crustal anomalies. Beneath the Appalachian Basin in northwestern Alabama, broad deep-crustal anomalies of the continental interior include the Grenville front and New York-Alabama lineament (dextral fault). Toward the east and south, high-angle discordance between the northeast-trending Appalachians and the east-west-trending wedge of overlapping Mesozoic and Cenozoic Gulf Coastal Plain sediments reveals how bedrock geophysical signatures progressively change with deeper burial. Highfrequency magnetic anomalies in the Appalachian deformed domain (ADD) correspond to amphibolites and mylonites outlining terranes, while broader, lower-amplitude domains include Paleozoic intrusive bodies and Grenville basement gneiss. Fundamental ADD structures (e.g., the Alexander City, Towaliga, and Goat Rock-Bartletts Ferry faults) can be traced southward beneath the Gulf Coastal Plain to the suture with Gondwanan crust of the Suwannee terrane. Within the ADD, there is clear magnetic distinction between Laurentian crust and the strongly linear, high-frequency magnetic highs of peri-Gondwanan (Carolina-Uchee) arc terranes. The contact (Central Piedmont suture) corresponds to surface exposures of the Bartletts Ferry fault. ADD magnetic and gravity signatures are truncated by the eastwest-trending Altamaha magnetic low associated with the Suwannee suture. Arcuate northeast-trending magnetic linears of the Suwannee terrane refl ect internal structure and Mesozoic failed-rift trends. Geophysical data can be used to make inferences on surface and subsurface geology and vice versa, which has applicability anywhere that bedrock is exposed or concealed beneath essentially non-magnetic sedimentary cover.