1988
DOI: 10.1016/s0294-1449(16)30348-1
|View full text |Cite
|
Sign up to set email alerts
|

Ljusternik–Schnirelmann theory on $C^1$-manifolds

Abstract: L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ljust… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
117
0
4

Year Published

2009
2009
2023
2023

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 155 publications
(123 citation statements)
references
References 16 publications
2
117
0
4
Order By: Relevance
“…To attain this objective we will use a variational technique based on Ljusternick-Schnirelmann theory on C 1 -manifolds [11]. In fact, we give a direct characterization of λ k involving a mini-max argument over sets of genus greater than k.…”
Section: Mdm Alaoui Et Al / Advances In Sciencementioning
confidence: 99%
“…To attain this objective we will use a variational technique based on Ljusternick-Schnirelmann theory on C 1 -manifolds [11]. In fact, we give a direct characterization of λ k involving a mini-max argument over sets of genus greater than k.…”
Section: Mdm Alaoui Et Al / Advances In Sciencementioning
confidence: 99%
“…To solve the eigenvalue problem (3.2), we will use the Ljusternik-schnirelmann theory on C 1 -manifolds (see [18] corollary 4.1). For any t > 0, denote by…”
Section: Proofmentioning
confidence: 99%
“…[18] Suppose that M is a closed symmetric C 1 -manifold of a real Banach space E and 0 / ∈ M . Suppose also that f ∈ C 1 (M, IR) is even and bounded bellow.…”
mentioning
confidence: 99%
“…Proposition 2.1 is proved in [5] by applying a general result from infinite dimensional Ljusternik-Schnirelman theory (see [6]). In [5], the authors proved the simplicity, isolation and monotonicity with respect to the weight of the first eigenvalue λ 1 (m) of the Steklov eigenvalue problem 6.…”
Section: Preliminariesmentioning
confidence: 99%