Waste-rock material used in underground backfill mining has a granular texture and acquires non-linear deformation characteristics when compressed. The deformation modulus of waste-rock measured by a laboratory compression test is significantly different from the true deformation modulus in the field, due to the complete confining effect of the loading steel cylinder. In this study, we performed a series of laboratory-based compression tests on waste-rock samples. The results showed that lab-acquired deformation modulus variations of waste rock could be divided into three stages: slow increase, accelerated increase, and rapid increase. We also measured the true deformation modulus of backfill waste rock by conducting a field test in gob areas of the Tangshan coal mine, China. The hardening process of backfill waste rock during the field test was analyzed, and could be divided into four stages: roof contact, rapid compression, slow compression, and long-term stable. With the increase of axial strain, the lab- and field-measured deformation moduli of waste rock both increased exponentially. A correction parameter was proposed to investigate the relationship between the field-generated true deformation modulus and the lab-tested deformation modulus. The correction parameter k positively correlated with the axial strain, in the form of an exponential function. The magnitude of k was between 0.5616 and 0.6531.