Further structure-activity studies of desferrithiocin analogues are carried out. (S)-Desazadesmethyldesferrithiocin, 2-(2-hydroxyphenyl)-Delta2-thiazoline-4(S)-carboxylic acid, serves as the principal framework in the current paper. Desazadesmethyldesferrithiocin can be structurally altered with facility, and data are already available on its iron-clearing properties and toxicity parameters. Four different kinds of structural modifications of this framework are undertaken: introduction of hydroxy, carboxy, or methoxy groups on the aromatic ring; alteration of the thiazoline ring; increasing the distance between the ligand donor atoms; and benz-fusion of the aromatic rings. The structural modifications described are shown to have a tremendous impact on both the iron clearance and toxicity profiles of the desazadesmethyldesferrithiocin molecule. All of the compounds are assessed in a bile-duct-cannulated rodent model to determine iron clearance efficiency. Ligands which demonstrate an efficiency of greater than 2% are carried forward to the iron-overloaded primate for iron-clearing measurements. Ligands with efficiencies greater than 3% in the primate are then evaluated in a formal toxicity study in rodents. On the basis of the results of the present work, 2-(2, 4-dihydroxyphenyl)-Delta2-thiazoline-4(S)-carboxylic acid is a promising candidate for clinical evaluation.
Biological conversion of sulfide, acetate, and nitrate to, respectively, elemental sulfur (S(0)), carbon dioxide, and nitrogen-containing gas (such as N2) at NaCl concentration of 35-70 g/L was achieved in an expanded granular sludge bed (EGSB) reactor. A C/N ratio of 1:1 was noted to achieve high sulfide removal and S(0) conversion rate at high salinity. The extracellular polymeric substance (EPS) quantities were increased with NaCl concentration, being 11.4-mg/g volatile-suspended solids at 70 mg/L NaCl. The denitrifying sulfide removal (DSR) consortium incorporated Thauera sp. and Halomonas sp. as the heterotrophs and Azoarcus sp. being the autotrophs at high salinity condition. Halomonas sp. correlates with the enhanced DSR performance at high salinity.
The design, synthesis, and testing of a novel class of antidiarrheal drugs based on a tetraamine pharmacophore are reported. While N1,N14-diethylhomospermine (DEHSPM) (5 mg/kg) completely prevents diarrhea in rodents, tissue distribution studies demonstrated that the principal metabolite of DEHSPM, homospermine (HSPM), accumulates and persists in tissues for a protracted period of time. This accumulation accounts for a large part of the chronic toxicity of DEHSPM. Thus a major objective was to develop a metabolically labile analogue of DEHSPM which retained the desirable biological properties of the parent drug. Hydroxyl groups, sites vulnerable to further metabolic transformation, were introduced into the external aminobutyl segments providing N1,N14-diethyl-(3R),(12R)-dihydroxyhomospermine [(HO)2-DEHSPM]. The design concept was assisted by molecular modeling, which predicted that (HO)2DEHSPM would have a Ki for polyamine transport essentially identical with that of DEHSPM. The experimentally measured Ki and also the observed values of other biological properties of (HO)2DEHSPM were in fact identical with those of DEHSPM, including IC50 against L1210 cells, impact on the NMDA receptor, and impact on L1210 native polyamine pools. Most significantly, however, there was no accumulation of the dideethylated metabolite in tissues from mice treated chronically with (HO)2DEHSPM, and (HO)2DEHSPM was 3-fold less toxic than DEHSPM. Finally, (HO)2DEHSPM completely prevented diarrhea in the castor oil-treated rat model at a dose of 5 mg/kg, just as did DEHSPM.
Basic solutions of tetrapeptides derived from L-aspartic acid diketopiperazines are shown to form microcapsules when acidified to pH 2.4. An initial structure-activity study clearly demonstrates that a very delicate balance exists between the tetrapeptides' structure and their ability to self-assemble. Scanning electron micrographs confirm that microcapsules and not solid microspheres are formed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.