Thermal conductivity of multiwalled carbon nanotubes ͑CNT's͒ prepared using a microwave plasma chemical vapor deposition system is investigated using a pulsed photothermal reflectance technique. We find that the average thermal conductivity of carbon nanotube films, with the film thickness from 10 to 50 m, is around 15 W/m K at room temperature and independent of the tube length. Taking a small volume filling fraction of CNT's into account, the effective nanotube thermal conductivity could be 2ϫ10 2 W/m K, which is smaller than the thermal conductivity of diamond and in-plane graphite by a factor of 9 and 7.5, respectively.
Abstract-Transmission Control Protocol (TCP) is the most popular transport layer protocol for the Internet. Due to various reasons, such as multipath routing, route fluttering, and retransmissions, packets belonging to the same flow may arrive out of order at a destination. Such packet reordering violates the design principles of some traffic control mechanisms in TCP and, thus, poses performance problems. In this paper, we provide a comprehensive and in-depth survey on recent research on packet reordering in TCP. The causes and problems for packet reordering are discussed. Various representative algorithms are examined and compared by computer simulations. The ported program codes and simulation scripts are available for download. Some open questions are discussed to stimulate further research in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.