Cite this article as: Chunhua Shen, Hongdong Li and Michael J. Brooks, Supervised dimensionality reduction via sequential semidefinite programming, Pattern Recognition (2008Recognition ( ), doi:10.1016Recognition ( /j.patcog.2008 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
AbstractMany dimensionality reduction problems end up with a trace quotient formulation. Since it is difficult to directly solve the trace quotient problem, traditionally the trace quotient cost function is replaced by an approximation such that generalized eigenvalue decomposition can be applied. In contrast, we directly optimize the trace quotient in this work. It is reformulated as a quasi-linear semidefinite optimization problem, which can be solved globally and efficiently using standard off-the-shelf semidefinite programming solvers. Also this optimization strategy allows one to enforce additional constraints (for example, sparseness constraints) on the projection matrix. We apply this optimization framework to a novel dimensionality reduction algorithm. The performance of the proposed algorithm is demonstrated in experiments on several UCI machine learning benchmark examples, USPS handwritten digits as well as ORL and Yale face data.