Pregnancy and lactation have been shown over the last 40 years to be physiological states in which hypothalamic-pituitary-adrenal (HPA) axis responses to stressors are markedly attenuated (1, 2). These phenomena provide an unequalled opportunity to understand natural mechanisms that reduce stress responses, and the prospect of new therapies for stress-related disorders.The (HPA) axis comprises the corticotropin-releasing factor (CRF) neurones in the parvocellular paraventricular nucleus (pPVN), which also variably produce vasopressin and project to the external zone of the median eminence. These neurosecretory neurones release their peptides into the primary capillary plexus of the hypothalamic-hypophysial portal system to act respectively on the CRF1 and V1b receptors on the corticotrophs in the anterior pituitary gland (3, 4). The consequent stimulation of secretion of corticotropin [adrenocorticotrophic hormone (ACTH); a product of pro-opiomelanocortin (POMC)], leads to increased synthesis and secretion of glucocorticoid (cortisol in humans and other species; corticosterone in rodents) by the adrenal cortex. Glucocorticoids have powerful actions on metabolism and immune mechanisms (5, 6). The HPA axis is regulated by tonic glucocorticoid feedback (7) [involving mineralocorticoid receptors (MR) in the hippocampus, and glucocorticoid receptors (GR) in the brain and corticotrophs], by metabolic signals (8) (including from adipose tissue), and the circadian clock in the suprachiasmatic nuclei (9). Over the past 40 years, it has been recognised that the maternal hypothalamic-pituitary-adrenal (HPA) axis undergoes adaptations through pregnancy and lactation that might contribute to avoidance of adverse effects of stress on the mother and offspring. The extent of the global adaptations in the HPA axis has been revealed and the underlying mechanisms investigated within the last 20 years. Both basal, including the circadian rhythm, and stress-induced adrenocorticotrophic hormone and glucocorticoid secretory patterns are altered. Throughout most of pregnancy, and in lactation, these changes predominantly reflect reduced drive by the corticotropin-releasing factor (CRF) neurones in the parvocellular paraventricular nucleus (pPVN). An accompanying profound attenuation of HPA axis responses to a wide variety of psychological and physical stressors emerges after mid-pregnancy and persists until the end of lactation. Central to this suppression of stress responsiveness is reduced activation of the pPVN CRF neurones. This is consequent on the reduced effectiveness of the stimulation of brainstem afferents to these CRF neurones (for physical stressors) and of altered processing by limbic structures (for emotional stressors). The mechanism of reduced CRF neurone responses to physical stressors in pregnancy is the suppression of noradrenaline release in the PVN by an up-regulated endogenous opioid mechanism, which is induced by neuroactive steroid produced from progesterone. By contrast, in lactation suckling the young provides...