A successful pregnancy requires multiple adaptations of the mother's physiology to optimize fetal growth and development, to protect the fetus from adverse programming, to provide impetus for timely parturition and to ensure that adequate maternal care is provided after parturition. Many of these adaptations are organized by the mother's brain, predominantly through changes in neuroendocrine systems, and these changes are primarily driven by the hormones of pregnancy. By contrast, adaptations in the mother's brain during lactation are maintained by external stimuli from the young. The changes in pregnancy are not necessarily innocuous: they may predispose the mother to post-partum mood disorders.
1. The responsiveness of the rat hypothalamo-pituitary-adrenal (HPA) axis and hypothalamo-neurohypophysial system (HNS) to emotional (elevated plus-maze) and physical (forced swimming) stressors and to administration of synthetic corticotrophinreleasing hormone (CRH) was investigated during pregnancy and lactation. In addition to pregnancy-related adaptations at the adenohypophysial level, behavioural responses accompanying the neuroendocrine changes were studied. 2. Whereas basal (a.m.) plasma corticosterone, but not corticotrophin (adrenocorticotrophic hormone; ACTH), levels were increased on the last day (i.e. on day 22) of pregnancy, the stress-induced rise in both plasma hormone concentrations was increasingly attenuated with the progression of pregnancy beginning on day 15 and reaching a minimum on day 21 compared with virgin control rats. A similar attenuation of responses to both emotional and physical stressors was found in lactating rats. 3. Although the basal plasma oxytocin concentration was elevated in late pregnancy, the stressinduced rise in oxytocin secretion was slightly lower in day 21 pregnant rats. In contrast to vasopressin, oxytocin secretion was increased by forced swimming in virgin and early pregnant rats indicating a differential stress response of these neurohypophysial hormones. 4. The blunted HPA response to stressful stimuli is partly due to alterations at the level of corticotrophs in the adenohypophysis, as ACTH secretion in response to CRH in vivo (40 ng kg¢, i.v.) was reduced with the progression of pregnancy and during lactation. In vitro measurement of cAMP levels in pituitary segments demonstrated reduced basal levels of cAMP and a lower increase after CRH stimulation (10 nÒ, 10 min) in day 21 pregnant compared with virgin rats, further indicating reduced corticotroph responsiveness to CRH in pregnancy. 5. The reduced pituitary response to CRH in late pregnancy is likely to be a consequence of a reduction in CRH receptor binding as revealed by receptor autoradiography.[ÁÂÇI]CRH binding in the anterior pituitary was significantly reduced in day 11, 17 and 22 pregnant rats compared with virgin controls. 6. Anxiety-related behaviour of the animals as revealed by the time on and entries into the open arms of the elevated plus-maze was different between virgin and pregnant rats with decreased number of entries indicating increased anxiety with the progression of pregnancy (except on pregnancy day 18). The emotional behaviour, however, was not correlated with the neuroendocrine responses. 7. The results indicate that the reduced response of the HPA axis to stressors described previously during lactation is already manifested around day 15 of pregnancy in the rat and involves physiological adaptations at the adenohypophysial level. However, alterations in stressor perception at higher brain levels with the progression of pregnancy may also be involved.
Stress exposure during pregnancy can 'programme' adult behaviour and hypothalamic-pituitary-adrenal (HPA) axis stress responsiveness. In the present study, we utilised an ethologically relevant social stressor to model the type of stress that pregnant women may experience. We investigated the effects of social defeat by a resident lactating rat over 5 days during the last week of pregnancy on the pregnant intruder rat HPA axis, and on HPA responsivity to stress and anxiety-related behaviour in the adult offspring of the socially-defeated intruder rats. HPA axis responses after social defeat were attenuated in the pregnant rats compared to virgin females. In the adult offspring, systemic interleukin (IL)-1beta or restraint increased adrenocorticotrophic hormone and corticosterone secretion in male and female control rats; however, in prenatally stressed (PNS) offspring, HPA responses were greatly enhanced and peak hormone responses to IL-1beta were greater in females versus males. Male PNS rats displayed increased anxiety behaviour on the elevated plus maze; however, despite marked changes in anxiety behaviour across the oestrous cycle, there were no differences between female control and PNS rats. Investigation of possible mechanisms showed mineralocorticoid mRNA levels were reduced in the hippocampus of male and female PNS offspring, whereas glucocorticoid receptor mRNA expression was modestly reduced in the CA2 hippocampal subfield in female PNS rats only. Corticotropin-releasing hormone mRNA and glucocorticoid receptor mRNA expression in the central amygdala was greater in PNS males and females compared to controls. The data obtained in the present study indicate that prenatal social stress differentially programmes anxiety behaviour and HPA axis responses to stress in male and female offspring. Attenuated glucocorticoid feedback mechanisms in the limbic system may underlie HPA axis hyper-reactivity to stress in PNS offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.