Local structure characterization with the bond-orientational order parameters q 4 , q 6 ,. . . introduced by Steinhardt et al. has become a standard tool in condensed matter physics, with applications including glass, jamming, melting or crystallization transitions and cluster formation. Here we discuss two fundamental flaws in the definition of these parameters that significantly affect their interpretation for studies of disordered systems, and offer a remedy. First, the definition of the bond-orientational order parameters considers the geometrical arrangement of a set of neighboring spheres NN(p) around a given central particle p; we show that procedure to select the spheres constituting the neighborhood NN(p) can have greater influence on both the numerical values and qualitative trend of q l than a change of the physical parameters, such as packing fraction. Second, the discrete nature of neighborhood implies that NN(p) is not a continuous function of the particle coordinates; this discontinuity, inherited by q l , leads to a lack of robustness of the q l as structure metrics. Both issues can be avoided by a morphometric approach leading to the robust Minkowski structure metrics q ′ l . These q ′ l are of a similar mathematical form as the conventional bond-orientational order parameters and are mathematically equivalent to the recently introduced Minkowski tensors [Europhys. Lett. 90, 34001 (2010); Phys. Rev. E. 85, 030301 (2012)].