In recent years, a special type of cancer cell-the cancer stem cell (CSC)-has been identified and characterized for different tumors. CSCs may be responsible for the recurrence of a tumor following a primarily successful therapy and are thought to bear a high metastatic potential. For the development of efficient treatment strategies, the establishment of reliable methods for the identification and effective isolation of CSCs is imperative. Similar to their stem cell counterparts in bone marrow or small intestine, different cluster of differentiation surface antigens have been characterized, thus enabling researchers to identify them within the tumor bulk and to determine their degree of differentiation. In addition, functional properties characteristic of stem cells can be measured. Side population analysis is based on the stem cell-specific activity of certain ATP-binding cassette transporter proteins, which are able to transport fluorescent dyes out of the cells. Furthermore, the stem cell-specific presence of aldehyde dehydrogenase isoform 1 can be used for CSC labeling. However, the flow cytometric analysis of these CSC functional features requires specific technical adjustments. This review focuses on the principles and strategies of the flow cytometric analysis of CSCs and provides an overview of current protocols as well as technical requirements and pitfalls. A special focus is set on side population analysis and analysis of ALDH activity. Flow cytometrybased sorting principles and future flow cytometric applications for CSC analysis are also discussed. ' 2012 International Society for Advancement of Cytometry