Motivations bias our responses to stimuli, producing behavioral outcomes that match our needs and goals. We describe a mechanism behind this phenomenon: adjusting the time over which stimulus-derived information is permitted to accumulate toward a decision. As a Drosophila copulation progresses, the male becomes less likely to continue mating through challenges. We show that a set of Copulation Decision Neurons (CDNs) flexibly integrates information about competing drives to mediate this decision. Early in mating, dopamine signaling restricts CDN integration time by potentiating CaMKII activation in response to stimulatory inputs, imposing a high threshold for changing behaviors. Later into mating, the timescale over which the CDNs integrate termination-promoting information expands, increasing the likelihood of switching behaviors. We suggest scalable windows of temporal integration at dedicated circuit nodes as a key but underappreciated variable in state-based decision-making.