Abstract:Maximizing the likelihood has been widely used for estimating the unknown covariance parameters of spatial Gaussian processes. However, evaluating and optimizing the likelihood function can be computationally intractable, particularly for large number of (possibly) irregularly spaced observations, due to the need to handle the inverse of ill-conditioned and large covariance matrices. Extending the "inversion-free" method of Anitescu, Chen and Stein [1], we investigate a broad class of covariance parameter esti… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.