Neural spike trains, which are sequences of very brief jumps in voltage across the cell membrane, were one of the motivating applications for the development of point process methodology. Early work required the assumption of stationarity, but contemporary experiments often use time-varying stimuli and produce time-varying neural responses. More recently, many statistical methods have been developed for nonstationary neural point process data. There has also been much interest in identifying synchrony, meaning events across two or more neurons that are nearly simultaneous at the time scale of the recordings. A natural statistical approach is to discretize time, using short time bins, and to introduce loglinear models for dependency among neurons, but previous use of loglinear modeling technology has assumed stationarity. We introduce a succinct yet powerful class of time-varying loglinear models by (a) allowing individual-neuron effects (main effects) to involve time-varying intensities; (b) also allowing the individual-neuron effects to involve autocovariation effects (history effects) due to past spiking, (c) assuming excess synchrony effects (interaction effects) do not depend on history, and (d) assuming all effects vary smoothly across time. Using data from primary visual cortex of an anesthetized
Gaussian random fields are commonly used as models for spatial processes and maximum likelihood is a preferred method of choice for estimating the covariance parameters. However if the sample size n is large, evaluating the likelihood can be a numerical challenge. Covariance tapering is a way of approximating the covariance function with a taper (usually a compactly supported function) so that the computational burden is reduced. This article studies the fixed-domain asymptotic behavior of the tapered MLE for the microergodic parameter of a Matérn covariance function when the taper support is allowed to shrink as n → ∞. In particular if the dimension of the underlying space is ≤ 3, conditions are established in which the tapered MLE is strongly consistent and also asymptotically normal. Numerical experiments are reported that gauge the quality of these approximations for finite n.
Statist. Sci. 4 (1989) 432-433] proposed the Matérn-type Gaussian random fields as a very flexible class of models for computer experiments. This article considers a subclass of these models that are exactly once mean square differentiable. In particular, the likelihood function is determined in closed form, and under mild conditions the sieve maximum likelihood estimators for the parameters of the covariance function are shown to be weakly consistent with respect to fixed-domain asymptotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.