Buffelgrass [Pennisetum ciliare (L.) Link] is an invasive C4 perennial bunchgrass that is a threat to biodiversity in aridlands in the Americas and Australia. Topography influences P. ciliare occurrence at large spatial scales, but further investigation into the relationship between local-scale topography and P. ciliare growth and reproduction would be beneficial. Further, density dependent effects on P. ciliare growth and reproduction have been demonstrated in greenhouse experiments, but the extent to which density dependence influences P. ciliare in natural populations warrants further investigation. Here we present a study on the relationships between local-scale topography (aspect and slope gradient) and vegetation characteristics (shrub cover, P. ciliare cover, and P. ciliare density) and their interactions on individual P. ciliare plant size and reproduction. We measured slope gradient, aspect, shrub cover, P. ciliare cover, P. ciliare density and the total number of live culms and reproductive culms of ten P. ciliare plants in 33 4x4 m plots located in 11 transects at the Desert Laboratory at Tumamoc Hill, Tucson, AZ, USA. We modeled the relationships at the local-scale of 1) P. ciliare cover and density with aspect and slope gradient and 2) P. ciliare size and reproduction with abiotic (slope gradient and aspect) and biotic (P. ciliare cover and density and native shrub and cacti cover) characteristics. Aspect and slope gradient were poor predictors of P. ciliare cover and density in already invaded sites at the scale of our plots. However, aspect had a significant relationship with P. ciliare plant size and reproduction. P. ciliare plants on south-facing aspects were larger and produced more reproductive culms than on other aspects. Further, we found no relationship between P. ciliare density and P. ciliare plant size and reproduction. Shrub cover was positively correlated with P. ciliare reproduction. South-facing aspects are likely most vulnerable to fast spread and infilling by new P. ciliare introductions.