[1] Recently initiated observation networks in the Cordillera Blanca (Peru) provide temporally high-resolution, yet short-term, atmospheric data. The aim of this study is to extend the existing time series into the past. We present an empirical-statistical downscaling (ESD) model that links 6-hourly National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis data to air temperature and specific humidity, measured at the tropical glacier Artesonraju (northern Cordillera Blanca). The ESD modeling procedure includes combined empirical orthogonal function and multiple regression analyses and a double cross-validation scheme for model evaluation. Apart from the selection of predictor fields, the modeling procedure is automated and does not include subjective choices. We assess the ESD model sensitivity to the predictor choice using both single-field and mixed-field predictors. Statistical transfer functions are derived individually for different months and times of day. The forecast skill largely depends on month and time of day, ranging from 0 to 0.8. The mixed-field predictors perform better than the single-field predictors. The ESD model shows added value, at all time scales, against simpler reference models (e.g., the direct use of reanalysis grid point values). The ESD model forecast 1960-2008 clearly reflects interannual variability related to the El Niño/Southern Oscillation but is sensitive to the chosen predictor type.Citation: Hofer, M., T. Mölg, B. Marzeion, and G. Kaser (2010), Empirical-statistical downscaling of reanalysis data to highresolution air temperature and specific humidity above a glacier surface (Cordillera Blanca, Peru),