The random phase approximation (RPA) is exact for the exchange energy of a many-electron ground state, but RPA makes the correlation energy too negative by about 0.5 eV/electron. That large short-range error, which tends to cancel out of iso-electronic energy differences, is largely corrected by an exchange-correlation kernel, or (as in RPA+) by an additive local or semilocal correction. RPA+ is by construction exact for the homogeneous electron gas, and it is also accurate for the jellium surface. RPA+ often gives realistic total energies for atoms or solids in which spinpolarization corrections are absent or small. RPA and RPA+ also yield realistic singlet binding energy curves for H2 and N2, and thus RPA+ yields correct total energies even for spin-unpolarized atoms with fractional spins and strong correlation, as in stretched H2 or N2. However, RPA and RPA+ can be very wrong for spin-polarized one-electron systems (especially for stretched H2 + ), and also for the spin-polarization energies of atoms. The spin-polarization energy is often a small part of the total energy of an atom, but important for ionization energies, electron affinities, and the atomization energies of molecules. Here we propose a computationally efficient generalized RPA+ (gRPA+) that changes RPA+ only for spin-polarized systems by making gRPA+ exact for all oneelectron densities, in the same simple semilocal way that the correlation energy densities of many meta-generalized gradent approximations are made self-correlation free. By construction, gRPA+ does not degrade the exact RPA+ description of jellium. gRPA+ is found to greatly improve upon RPA and RPA+ for the ionization energies and electron affinities of light atoms. Many versions of RPA with an approximate exchange-correlation kernel fail to be exact for all one-electron densities, and they can also be self-interaction corrected in this way.