This study's objective was to identify and compare the localization of Aquaporin (AQP) 1, 4, 7, Na+/K +-ATPase, E-cadherin, zona occludin (ZO)-1, and occludin in human and rabbit vocal folds (VF)s to inform the design of future studies to explore the function of these proteins in the regulation of VF homeostasis. Methods: Four human larynges and five New Zealand white rabbit larynges were used. Samples were immunolabeled for primary antibodies against AQP1, AQP4, AQP7, the alpha subunit of Na+/K +-ATPase, E-cadherin, and ZO-1 and occludin and then captured digitally using a Nikon Eclipse 90i microscope and Hamamatsu C10600 Camera. Two raters familiar with human and rabbit VF histology identified positive labeling in tissue structures, including the apical epithelium, basal epithelium/basement membrane, and lamina propria (LP). Results: Samples from both species showed positive labeling for AQP1 in the basal epithelium/basement membrane, superficial LP, and deep/intermediate LP. Aquaporin 4, Aquaporin 7, Na+/K +-ATPase, and E-cadherin were primarily localized to the epithelium of both species. Zona occludin-1 was primarily localized apical epithelium and the superficial LP of both species. Occludin was primarily present in the apical epithelium in rabbit samples but not human. Conclusion: These data provide evidence of the presence of key ion transport channels and cell adhesion proteins in human and rabbit VFs. Aquaporin 1, 4, 7, Na+/K +-ATPase, E-cadherin, and ZO-1 were similarly localized in both species. These findings will be useful to investigators interested in the exploration of VF homeostasis and barrier integrity in future studies.