-Interest about social security has recently increased in favor of safety for infrastructure. In addition, advances in computer vision and pattern recognition research are leading to video-based surveillance systems with improved scene analysis capabilities. However, such video surveillance systems, which are controlled by human operators, cannot actively cope with dynamic and anomalous events, such as having an invader in the corporate, commercial, or public sectors. For this reason, intelligent surveillance systems are increasingly needed to provide active social security services. In this study, we propose a core technique for intelligent surveillance system that is based on swarm robot technology. We present techniques for invader enclosing using swarm robots based on multiple distributed object environment. The proposed methods are composed of three main stages: location estimation of the object, specified object tracking, and decision of the cooperative behavior of the swarm robots. By using particle filter, object tracking and location estimation procedures are performed and a specified enclosing point for the swarm robots is located on the interactive positions in their coordinate system. Furthermore, the cooperative behaviors of the swarm robots are determined via the result of path navigation based on the combination of potential field and wall-following methods. The results of each stage are combined into the swarm robot-based invader-enclosing technique on multiple distributed object environments. Finally, several simulation results are provided to further discuss and verify the accuracy and effectiveness of the proposed techniques.