Rational and generalisable methods for engineering surface functionality will be crucial to realising the technological potential of nanomaterials. Nanoparticle‐bound dynamic covalent exchange combines the error‐correcting and environment‐responsive features of equilibrium processes with the stability, structural precision, and vast diversity of covalent chemistry, defining a new and powerful approach for manipulating structure, function and properties at nanomaterial surfaces. Dynamic covalent nanoparticle (DCNP) building blocks thus present a whole host of possibilities for constructing adaptive systems, devices and materials that incorporate both nanoscale and molecular functional components. At the same time, DCNPs have the potential to reveal fundamental insights regarding dynamic and complex chemical systems confined to nanoscale interfaces.