Fast Spin Echo (FSE) trains elicited by non-selective "hard" refocusing radio frequency (RF) pulses have been proposed as a means to enable application of FSE methods for high resolution 3D magnetic resonance imaging (MRI). Hard-pulse FSE (HPFSE) trains offer short (3-4 ms) echo spacings, but are unfortunately limited to imaging the entire sample within the coil sensitivity thus requiring lengthy imaging times, consequently limiting clinical application. In this work we formulate and analyze two general purpose combinations of 3D HPFSE with Inner Volume (IV) MR imaging to circumvent this limitation. The first method employs a 2D selective RF excitation followed by the HPFSE train, and focuses on required properties of the spatial excitation profile with respect to limiting RF pulse duration in the 5-6 ms range. The second method employs two orthogonally selective 1D RF excitations (a 90 x°-180 y° pair) to generate an echo from magnetization within the volume defined by their intersection. Subsequent echoes are formed via the HPFSE train, placing the focus of the method on (a) avoiding spurious echoes that may arise from transverse magnetization located outside the slab intersection when it is unavoidably affected by the non-selective refocusing pulses, and (b) avoiding signal losses due to the necessarily different spacing (in time) of the RF pulse applications. The performance of each method is experimentally measured using Carr-PurcellMeiboom-Gill (CPMG) multi-echo imaging, enabling examination of the magnetization evolution throughout the echo train. The methods as implemented achieve 95% to 97% outer volume signal suppression, and higher suppression appears to be well within reach, by further refinement of the selective RF excitations. Example images of the human brain and spine are presented with each technique. We conclude that the SNR effciency of volume imaging in conjunction with the short echo spacing afforded by hard pulse trains enable high resolution 3D HPFSE MRI of a small fieldof-view (FOV) with minimal aliasing artifact.