“…In addition, due to the high throughput and low energy requirements, a novel application of plasmonics in chemical reactions gains significant attention, as reported in works on dissociation of hydrogen15, 16 and water,17, 18 photochemical19, 20, 21, 22, 23 and plasmon‐driven chemical reactions,24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 etc. SPs excited on the surface of gold or silver can non‐radiatively decay into so‐called hot electrons with a high energy between the Fermi and vacuum energy level 36, 37, 38, 39, 40. The hot electrons could scatter into the absorbed molecule's excited state and then trigger chemical reactions by reducing the activation energy, so‐called plasmonic catalysis 41.…”