Recent advancements in neural network quantisation have yielded remarkable outcomes, with three-bit networks reaching state-ofthe-art full-precision accuracy in complex tasks. These achievements present valuable opportunities for accelerating neural networks by computing in reduced precision. Implementing it on FPGAs can take advantage of bit-level reconfigurability, which is not available on conventional CPUs and GPUs. Simultaneously, the high data intensity of neural network processing has inspired computing-in-memory paradigms, including on FPGA platforms. By programming the effects of trained model weights as lookup operations in soft logic, the transfer of weight data from memory units can be avoided, alleviating the memory bottleneck. However, previous methods face poor scalability -the high logic utilisation limiting them to small networks/sub-networks of binary models with low accuracy. In this paper, we introduce Table Lookup Multiply-Accumulate (TLMAC) as a framework to compile and optimise quantised neural networks for scalable lookup-based processing. TLMAC clusters and maps unique groups of weights to lookupbased processing elements, enabling highly parallel computation while taking advantage of parameter redundancy. Further place and route algorithms are proposed to reduce LUT utilisation and routing congestion. We demonstrate that TLMAC significantly improves the scalability of previous related works. Our efficient logic mapping and high degree of reuse enables entire ImageNet-scale quantised models with full-precision accuracy to be implemented using lookup-based computing on one commercially available FPGA.