We have performed cough detection based on measurements from an accelerometer attached to the patient's bed. This form of monitoring is less intrusive than body-attached accelerometer sensors, and sidesteps privacy concerns encountered when using audio for cough detection. For our experiments, we have compiled a manually-annotated dataset containing the acceleration signals of approximately 6000 cough and 68000 non-cough events from 14 adult male patients in a tuberculosis clinic. As classifiers, we have considered convolutional neural networks (CNN), long-short-term-memory (LSTM) networks, and a residual neural network (Resnet50). We find that all classifiers are able to distinguish between the acceleration signals due to coughing and those due to other activities including sneezing, throat-clearing and movement in the bed with high accuracy. The Resnet50 performs the best, achieving an area under the ROC curve (AUC) exceeding 0.98 in cross-validation experiments. We conclude that high-accuracy cough monitoring based only on measurements from the accelerometer in a consumer smartphone is possible. Since the need to gather audio is avoided and therefore privacy is inherently protected, and since the accelerometer is attached to the bed and not worn, this form of monitoring may represent a more convenient and readily accepted method of long-term patient cough monitoring.
We present an automatic non-invasive way of detecting cough events based on both accelerometer and audio signals. The acceleration signals are captured by a smartphone firmly attached to the patient’s bed, using its integrated accelerometer. The audio signals are captured simultaneously by the same smartphone using an external microphone. We have compiled a manually-annotated dataset containing such simultaneously-captured acceleration and audio signals for approximately 6000 cough and 68000 non-cough events from 14 adult male patients. Logistic regression (LR), support vector machine (SVM) and multilayer perceptron (MLP) classifiers provide a baseline and are compared with three deep architectures, convolutional neural network (CNN), long short-term memory (LSTM) network, and residual-based architecture (Resnet50) using a leave-one-out cross-validation scheme. We find that it is possible to use either acceleration or audio signals to distinguish between coughing and other activities including sneezing, throat-clearing, and movement on the bed with high accuracy. However, in all cases, the deep neural networks outperform the shallow classifiers by a clear margin and the Resnet50 offers the best performance, achieving an area under the ROC curve (AUC) exceeding 0.98 and 0.99 for acceleration and audio signals respectively. While audio-based classification consistently offers better performance than acceleration-based classification, we observe that the difference is very small for the best systems. Since the acceleration signal requires less processing power, and since the need to record audio is sidestepped and thus privacy is inherently secured, and since the recording device is attached to the bed and not worn, an accelerometer-based highly accurate non-invasive cough detector may represent a more convenient and readily accepted method in long-term cough monitoring.
Weightless neural networks (WNNs) are an alternative pattern recognition technique where RAM nodes function as neurons. As both training and inference require mostly table lookups, few additions, and no multiplications, WNNs are suitable for high-performance and low-power embedded applications. This work introduces a novel approach to implement WiSARD, the leading WNN state-of-the-art architecture, completely eliminating memories and arithmetic circuits and utilizing only logic functions. The approach creates compressed minimized implementations by converting trained WNN nodes from lookup tables to logic functions. The proposed LogicWiSARD is implemented in FPGA and ASIC technologies to illustrate its suitability for edge inference. Experimental results show more than 80% reduction in energy consumption when the proposed LogicWiSARD model is compared with a multilayer perceptron network (MLP) of equivalent accuracy. Compared to previous work on FPGA implementations for WNNs, convolutional neural networks, and binary neural networks, the energy savings of LogicWiSARD range between 32.2% and 99.6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.