Additional information is available at the end of the chapter http://dx.doi.org/10.5772/46011
IntroductionComplex mechanisms from retina to different visual areas allow us to read these lines. The visual system is inevitable for the way we interact with our surroundings as majority of our impressions, memories, feelings are bound to the visual perception. Millions of cortical neurons are implicated and programmed specifically to frame this incredible interface (perception) for us to interact with the world. Neurons in the visual cortex respond essentially to the variations in luminance occurring within their receptive fields, where each neuron fires maximally by acting as a filter for stimulus features such as orientation, motion, direction and velocity, with an appropriate combination of these properties [1][2][3][4][5].The seminal work of Hubel and Wiesel on the visual cortex of cat [1,2,[6][7][8], has been instrumental in establishing the anatomical and physiological aspects of the visual cortex. Many studies by various investigators on the visual cortex of different animals, thereafter, have been phenomenal in understanding the brain in general and the vision in particular; yet, neuronal mechanisms involved in processing of stimuli still elude our complete understanding of cortical functioning. These findings have been crucial in unravelling the organization of the visual cortex. The visual cortex reorganises itself in the postnatal development, within a specific period called 'the critical period ' [9], which is a period characterised with pronounced brain plasticity. In recent years, the focus of the research has been to comprehend the 'reorganization' of neuronal framework, especially after the so called 'critical period ' [10-12] in response to various conditions and its ability to adapt accordingly. This amazing tendency of brain to change its neuronal connections and properties is termed 'plasticity' [13]. Two common approaches to study the reorganization of visual cortex are frequently applied: deprivation and induced adaptation. Deprivation refers to the removal of sensory inputs, whereas induced adaptation refers to the forceful application of a sensory input. Consequently, neurons communicate dynamically with each Visual Cortex -Current Status and Perspectives 324 other in a specific way self-assembling, auto-calibrating, memorizing and adapting to different stimuli properties, thus responding accordingly to several experiences [14][15][16].The aim of this chapter is to primarily focus on how the linkage between cells changes following plastic modifications of cortical neuronal properties, that is, how the reorganization of the cortical network is modulated following adaptation-induced plasticity, as it is inferred by cross-correlating the action potentials of the neurons in the primary visual cortex. We begin with the general architecture of visual cortex (particularly cat visual cortex), followed by a brief introduction to plasticity and adaptation. Then, we cite an example of modification of th...