Neurophenomenology, as an attempt to combine and mutually enlighten neural and experiential descriptions of cognitive processes, has met practical difficulties which have limited its implementation into actual research projects. The main difficulty seems to be the disparity of the levels of description: while neurophenomenology strongly emphasizes the micro-dynamics of experience, at the level of brief mental events with very specific content, most neural measures have much coarser functional selectivity, because they mix functionally heterogeneous neural processes either in space or in time. We propose a new starting point for this neurophenomenology, based on (a) the recent development of human intra-cerebral EEG (iEEG) research to highlight the neural micro-dynamics of human cognition, with millimetric and millisecond precision and (b) a disciplined access to the experiential micro-dynamics, through specific elicitation techniques. This lays the foundation for a microcognitive science, the practical implementation of neurophenomenology to combine the neural and experiential investigations of human cognition at the subsecond level.
Keywords: elicitation, neuro-phenomenology, microcognition, microdynamics, neurofeedback, enaction, microgenesis, gamma bandDespite the immediate appeal of neurophenomenology, as an attempt to combine and mutually enlighten neural and experiential descriptions of cognitive processes (Varela, 1996), practical difficulties have limited its implementation into actual research projects. In spite of some success (Lutz et al., 2002;Petitmengin et al., 2007), an acknowledged challenge has been to find a level of observation at which convergence is possible. Neurophenomenology strongly emphasizes the micro-dynamics of experience, at the level of brief mental events with very specific content, such as visual perception or access to the meaning of a word. However, most neural measures have much coarser functional selectivity, because they mix functionally heterogeneous neural processes either in space (i.e., scalp-level EEG) or in time (i.e., fMRI). Such discrepancy makes it extremely difficult to even try a correlation between neural and experiential descriptions. In this paper, we propose a new starting point for neurophenomenology, based on (a) the recent development of human intra-cerebral EEG (iEEG) research to reveal the neural microdynamics of human cognition, with millimetric and millisecond precision and (b) a disciplined access to the experiential microdynamics, through specific elicitation techniques. If a bridge is to be built between the neural and experiential levels, it should be done where the river is shallow, where descriptions of mental processes are fine-grained on both sides. This means simple cognitive operations, at the level of the perception-action cycle (Fuster, 2004;Madl et al., 2011), and precise measures of their micro-dynamics. This lays the foundation for a micro-cognitive science: the practical implementation of neurophenomenology to combine the neural and expe...