The short form (S1b) of the prolactin receptor (PRLR) silences prolactin-induced activation of gene transcription by the PRLR long form (LF). The functional and structural contributions of two intramolecular disulfide (S-S) bonds within the extracellular subdomain 1 (D1) of S1b to its inhibitory function on the LF were investigated. Mutagenesis of the paired cysteines eliminated the inhibitory action of S1b. The expression of the mutated S1b (S1bx) on the cell surface was not affected, indicating native-like folding of the receptor. The constitutive JAK2 phosphorylation observed in S1b was not present in cells expressing S1bx, and JAK2 association was disrupted. BRET 50 (BRET 50 represents the relative affinity as acceptor/donor ratio required to reach half-maximal BRET [bioluminescence resonance energy transfer] values) showed decreased LF/S1bx heterodimeric-association and increased affinity in S1bx homodimerization, thus favoring LF homodimerization and prolactin-induced signaling. Computer modeling based on the PRLR crystal structure showed that minor changes in the tertiary structure of D1 upon S-S bond disruption propagated to the quaternary structure of the homodimer, affecting the dimerization interface. These changes explain the higher homodimerization affinity of S1bx and provide a structural basis for its lack of inhibitory function. The PRLR conformation as stabilized by S-S bonds is required for the inhibitory action of S1b on prolactin-induced LF-mediated function and JAK2 association.The prolactin receptor (PRLR) belongs to the class I cytokine receptor superfamily (4, 5). It binds the pituitary hormone prolactin (PRL) with high affinity and triggers intracellular responses that participate in diverse biological functions in target tissues, including the mammary gland, organs of the reproductive system, the central nervous system, pituitary, and adrenal. At least nine variants are generated by alternative splicing of the human PRLR (hPRLR) gene (16-18, 21, 35); they differ in the lengths and compositions of their cytoplasmic domains and/or extracellular (EC) domains (http://atlasgeneticsoncology.org/Genes /PRLRID42891ch5p14.html). The full-length receptor, or long form (LF), is composed of a ligand binding EC domain, a single transmembrane domain, and a cytoplasmic domain required for signal transduction (5, 20). PRL acts through the LF to stimulate cell proliferation and differentiation. The short forms (SFs) of the receptor, S1a and S1b, are derived from alternative splicing of exons 10 and 11 and contain unique cytoplasmic sequences (16). S1a is a 376-amino-acid (aa) receptor that contains partial exon 10 sequences and a unique 39-aa C terminus derived from exon 11. S1b is a 288-aa variant that lacks the entire exon 10 and contains 3 aa derived from exon 11 at the C terminus. Unlike the LF, neither of the SF receptors can mediate activation of the -casein gene promoter induced by PRL, and both SFs are inhibitory of the transcriptional activation induced by PRL through the LF (16). S1b is more ...